Generative Adversarial Networks (GAN) Saliency Detection, Depth Based Saliency Comparison

Hamish Sams

The University of Sheffield

3rd May 2019

What is saliency prediction?

(a) RGB

(b) Depth

(c) Salient

(a) RGB

(b) Depth

(c) Salient

Figure: Example saliency from the NLPR dataset

Figure: Example saliency from the Olesova dataset

Saliency prediction algorithms identify eyecatching objects in a scene/quantify how salient each pixel of a scene is.

What is a GAN

Figure: GAN System diagram

GANs are a design of neural network based on two networks:

- Generator To create fake images based off some input
- Discriminator To classify real and fake images

Discriminator

A discriminator is based on a convolutional neural network to classify images.

Figure: Convolutional neural network

A convolutional neural network is based on image convolution to downsample an image into a more processable amount of data. with each convolution more feature maps are generated. Once the images are small enough the data is linearised and densely connected.

CNN Example

```
image = cv2.imread('uniLogo.png')
image=cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image=image/255
plt.imshow(dmage)
plt.axis('off')
plt.show()
print("Shape: ",image.shape)
print("Size: ",image.size,image.size/image.size*100, "%")
```


Shape: (225, 225, 3) Size: 151875 100.0 %

Figure: Load image code

Figure: Tensorflow single Convolution code

Generator

A generator is based on a convolutional neural network followed by a de-convolutional neural network.

Figure: Convolutional to de-convolutional neural network

Project aims

There are two main aims for this project:

- Create a novel saliency prediction algorithm using a GAN.
- Compare saliency prediction with RGB and RGB-D

Methodology

- Choose GAN generator and discriminator design
- Train 3 GANs to each accept: RGB, Depth and RGB-D separately
- Use other combination methods on RGB and depth data to compare ours to.
- Quantify model efficiency

Results

Two different methods were used to quantify model accuracy:

- F-measure
- Receiver operating characteristic curve (ROC)

Both of these are based on True positive rate, false positive rate, true negative rate and false negative rate.

F-Measure

F-Measure is a numeric value calculated as the harmonic mean of precision and recall:

$$F = 2 \cdot \frac{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}}{\frac{TP}{TP + FP} + \frac{TP}{TP + FN}} \tag{1}$$

- TP True positive rate
- P False positive rate
- FN False negative rate

F-Measure ranges from 1-0 with 1 meaning 100% true positive rate and 0% false positives/negatives.

Receiver operating characteristic

ROC is a line generated by varying a threshold on an image and comparing that to ground truth.

Figure: Varying threshold on saliency map

Figure: Single ROC

Figure: All ROC in dataset

Results

Model	F-Measure	AUC
Ours(RGB)	0.7248	0.9227
GBVŠ(RGÉ)	0.3163	0.7052
Itti(RĠB)	0.3097	0.7380
LMH ´	0.1878	0.7646

Model	F-Measure	AUC
GP	0.5607	0.8668
GBVS (RGB)	0.5113	0.8927
Itti (RĠB)	0.4221	0.8597
Ours (*)	0.3950	0.7731
LMH`´	0.3208	0.7921

Figure: Olesova results

Figure: NLPR results

Results - Depth

Combination	F - Measure	AUC
RGB	0.7248	0.9227
RGBDepth	0.6866	0.8723
RGB + Depth	0.6121	0.8674
RGB*Depth	0.4144	0.8227
Depth .	0.4131	0.6821

Figure: Our combination methods compared

Future Work

A few ideas:

- Design neural network to take multiple inputs (3/4 channel)
- Run network on a larger epoch system
- Train/Test on similar saliency datasets
- Implement the network in a system such as compression

Conclusion

We set out with the following aims:

- Create a novel saliency prediction algorithm using a GAN.
- Compare saliency prediction with RGB and RGB-D

Any Questions?